

JK Cement Works Muddapur

22nd National Award for Excellence in Energy Management 2021

Presented by Umashankar S Choudhary - Unit Head R Durgaram - Sr. GM Shubham Ambure - Sr. Eng Great Place

Work. Certifie

ABOUT JK CEMENT LIMITED

JKC

J.K. Cement Ltd. is a part of Industrial conglomerate JK Organization. The Company is promoted by Late Mr. Yadupati Singhania.

The group entered the cement manufacturing business in 1975. Grey cement capacity of 14.7 MTPA & White cement capacity of 1.2 MTPA

JK Cement Muddapur having Capacity of 2.20 MTPA Clinkerisation & 3.50 MTPA Finished Cement grinding.

J K Cement Muddapur is certified with ISO 14001, ISO 9001, ISO 45001 & ISO 50001:2018. GreenCO Gold rating Plant, Great Place to work certified company

Captive power generation capacity of over 145 MW which includes 42 MW of waste heat recovery power plants.

IMPACT OF COVID 19

Initially, Due to Covid-19 Lockdown imposed affected the dispatches.

Later on when Lockdown eased, as per the market demand, we managed to cater the demand with proper planning and adhering the Covid guidelines and CAB.

Following actions has been taken to minimize the Impact of Covid 19:

- a) Staggered timing for Shift changeovers
- b) Teams formation for Critical jobs & Roster Plan implementation
- c) Plant operation with minimum required person
- d) Quick Reaction Team formed with Response Mechanism
- e) Set up Surveillance Team with Dedicated Control room
- f) Maximizing Social Distancing
- g) Disinfection & Sanitization
- h) Entry of outsiders to Plant prohibited
- i) Paper less initiative taken to mitigate the risk of transmission

Sr. No	Performance	Unit	2019-20	2020-21
1	ANNUAL GENERATION	MWH	111503	126598
2	AVG. AUX. CONSUMPTION	%	7.60	7.60
3	PLANT AVAILABILITY FACTOR	%	99.91	99.81
4	PLANT LOAD FACTOR	%	80	81
5	GROSS HEAT RATE	Kcal/KWH	3622	3456
6	DM WATER CONSUMPTION	%	0.90	0.90
7	SPECIFIC RAW WATER CONSUMPTION	M ³ /MWH	0.39	0.33

ENERGY CONSUMPTION SCENARIO

ENERGY CONSUMPTION SCENARIO

ENERGY BENCHMARKING

11-20		OUR ACHIEVEMENTS		16 24
		DTD basis	6.28 %	
578	Lowest Auxiliary %	MTD Basis	6.75 %	
		YTD Basis	7.60 %	
	Station Heat Rate	MTD Basis	3110	

	Competitor 1	Competitor 2	Competitor 3
Aux power consumption %	8.5	8.7	7.5
Gross heat rate (Kcal/kWh)	3327	3124	3174

ROAD MAP TO ACHIEVE BENCHMARK

Sr.No	Title of project	Expected Savings (Kwh)	Expected Saving (Rs Lacs)	Investment (Rs. Lacs)
1	Utilization of FD Fan No.1 (Idle) VFD for FD Fan-2 (Running)	300000	80	0.2
2	Unit -1 PA FAN VFD (idle) used for Unit I ACC Fan no. 06 (Running) (Change over switch method is applied).	60000	8	Nil
4	Replacement of Old model ACC Fan-7 fan set (Aerodynamic tech. light weight energy efficient Epoxy FRP Fan set)	60000	4	4
3	Improving TG vacuum by installing water Fog system below ACC	10000	0.7	0.4
5	Increasing the elevation of ID fan duct for Tunnel 1 & 2 for dust extraction by natural draught	23000	1.6	0.1

MAJOR ENCON PROJECTS - FY 2020-21

Sr. No	Project Description	Savings per Annum (Rs. in Lacs)	Investment (Rs. in Lacs)
1	Unit -2 PA FAN VFD (Existing idle) used for Unit I ACC Fan no. 06 (Boiler-1 running) (change over switch method is applied).	4	0.3
2	Charging of PMCC-2 by PMCC-1 enabling turning OFF of all and keeping only one transformer turning ON condition during shutdown.	2	Nil
3	ACC Fan no. 01 to 06 (All Fans on VFD mode) common vacuum control Logic development	0.7	Nil
4	Installation of energy meters on each Compressor unit	Enhanced Energy Monitoring	Nil
5	GI sheet covering the underground ETP water tank top end open portion. Evaporation loss quantity is reduced.	Water vapour losses reduced	0.15
6	Reduction of low speed set point of all ACC fans VFD from 42% to 36 %	0.76	Nil
7	Removal of ACC Fans suction bird screen, improvement in air velocity & reduction in power	2.5	Nil
8	Lube oil temp was reduced (42 Deg C to 35 Deg C) during barring gear mode	Reduction in heater operation hours and Power saved	Nil 1

MAJOR ENCON PROJECTS OF FY 2019-20

JKC

Sr. No	Project Description	Savings per Annum (Rs. in Lacs)	Investment (Rs. in Lacs)
1	VFD installation in ACC Fan no. 03	5	Nil
2	VFD installation in FD Fan motor	18	95
3	Optimization - FD Fan and PA fan process air flow	6	Nil
4	Single service air compressor is being run to cater the entire air requirement. (instead of both instrument & Service air compressor).	6.8	Nil
5	ACC Fan Set replacement by Aerodynamic tech energy efficient FRP Fan Set (06 nos.)	70	25
6	VFD low speed optimization in ACC Fan (05 Nos) (50 % to 42 %)	2.3	Nil
7	CEP operation under Auto cascade logic	1	Nil
8	Muffle furnace and Hot Air Oven Switching OFF practice	2.3	Nil
9	Boiler Feed pump operation under auto mode	5.3	Nil
10	Replacement of ACC 07th cell Fan motor 132 KW by 110 KW	0.8	Nil

MAJOR ENCON PROJECTS OF FY 2018-19

JKC

Sr. No	Project Description	Savings per Annum (Rs. in Lacs)	Investment (Rs. in Lacs)
1	Replacement of ACW old pump (110 KW) by new energy efficient pump (75KW)	6	0.4
2	Replacement of the existing Attemperator feed control valve by latest designed one	10.4	2
3	Installation of VFD For Unit I ACC Fans (4 No's)	18	18
4	ECO/APH ash conveying system discharge taken into Boiler-1. (instead of ASH SILO as a recycling method for LOI reduction in fly ash)	22	1
5	Installation of new ARC Valve in Boiler feed pump	5.4	6
6	Installation of Turbo Ventilator in TG hall roof.	2.5	1.5
7	LT Transformer (3 Nos) turning off during the plant shutdown	1.6	Nil
8	Installation of VFD for Bucket Elevator motor	1	1
9	Both Service & Instrument Compressor loading & unloading pressure reduction	3	Nil
10	New pump installed in Centralize AC room, to reduce load on ACW pump (VFD)	3	Nil

INNOVATIVE PROJECT-1

UTILIZATION OF UNIT-2 PA FAN VFD FOR UNIT-1 ACC FAN-6

Observation

Idle VFD (PA Fan 2) during Boiler-1 Operation. VFD requirement for ACC Fan No.6 (Running)

Problem

- VFD installation for ACC fans (5 Nos)
- Fan No-6 was running on DOL mode.

Modification

- Decision taken to utilize the idle VFD for running ACC fan No. 6.
- Provided changeover switch
- New cable connection (VFD to ACC-6).

Benefits & Results

- Overall ACC performance optimisation achieved.
- All VFD operation in PID mode.
- PA FAN-2 VFD(Idle) was utilised.

Savings Achieved

- Aux Power ₹ 4.2 lacs/Annum
- New VFD and cable cost ₹ 4 Lacs
- Total Cost Saved ₹ 8.2 lacs/Annum

INNOVATIVE PROJECT-2

REDUCTION OF MINIMUM SPEED LIMIT FOR ACC FANS

Observation

Dual Speed ACC fan motors were running at minimum speed limit of 50% only during part load condition.

Problem

- No clearance from OEM to run the motor on VFD mode below 50%.
- This resulting in high auxiliary consumption in part load condition as well as low ambient temperature.

Modification

- Decision taken to decrease the minimum speed set point from 50% to 42 % in single VFD for trial in phase manner.
- After further successful trials, the minimum speed set points lowered to 36 % in all VFDs.

Benefits

Optimized operation of ACC fans in maintaining vacuum.

Savings Achieved

- Daily Power savings of around 300 KWh.
- Annual Savings of around Rs. 5 Lacs achieved.

Minimum speed limit done in phase manner and safely achieved

INNOVATIVE PROJECT-3

CHARGING OF PMCC-2 FROM PMCC-1

Observation

During plant stoppage, two transformers running at low loads. Power import was on higher side.

Problem

- No common interconnection between two PMCCs available.
- Increased import power due to transformer losses(150 KWH/Day)

Modification

- Decision to interconnect two PMCCs using by using two available spare feeders and only one single transformer will be running.
- New interconnecting cable laid.

Benefits

• The fixed losses of a transformer totally avoided.

Savings Achieved

- Daily Power savings of 150 KWh.
- Annual Savings of around Rs. 2 Lacs achieved.

UTILISATION OF RENEWABLE ENERGY

Year	Type of Energy	Consumption (Million Kwh)	% of Overall Energy
2019 10	Wind	10.5	7
2018-19	Solar	6	4
2010 20	Wind	26	19
2019-20	Solar	6	5
2020.21	Wind	19	14
2020-21	Solar	8.5	6

RENEWABLE ENERGY PROJECTS

JKC

- ✤ 5 MW On-site Solar Power Plant is under completion stage.
- Presently, solar power requirement is being met by purchasing the same from various power producers.

Solar street lights are being installed in phase manner.

✤ Wind power PPA established with M/s **ATRIA Wind Power Project** at Chitradurga, Karnataka with Rs.46 million investment. ✤ 20 Lacs units per month.

Solar heaters are installed at colony guest houses and apartments.

ENVIRONMENT MANAGEMENT - WATER

Modification of Fire Hydrant Lines.

(Underground to over ground)

- Water Storage tanks wall leakages have been arrested by water proof internal coating.
- Rain water is being collected in open pit, then used for dust suppression, ash draining, fire and smoke quenching at coal stock pile.
- In each quarter, cooling tower sump water is being shifted into effluent pit before sump cleaning activity.
- Zero Liquid Discharge Plant.
- External water audit conducted by third party.

ENVIRONMENT MANAGEMENT - ASH UTILIZATION

ENVIRONMENT MANAGEMENT - EMISSIONS

JKC

BEST PRACTICES - ENERGY MONITORING

	JK Cement Works Ltd. Muddap	m																		
2 X	25 MW Daily MIS Report For the Period Ju	ne of Year	2020-21									Date	01-07-2020	02-07-2020	03-07-2020	04-07-2020	05-07-2020	06-07-2020	07-07-2020	08-07-2020
Sr. No.	Particulars	Unit	Target	1-Jun	2-Jun	3-Jun	4-Jun	5-Jun	6-Jun	7-Jun	8-Jun									
(A)	POWER GENERATION											FUEL - INDIAN COAL	100%	100%	100%	100%	100%	100%	200%	100%
1	Total Power generation	KVH		499237	543535	540407	437014	523639	396629	540730	442117									
2	Auxiliary Power consumption as per LT Room	KVH		38197	41435	40747	34524	40749	33129	42670	36017	GEN	250.03	280.44	426.69	551.25	558.21	532.72	541.88	487.09
3	% of Aux. Power consumption at LT Room	×	7.50%	7.65	7.62	7.54	7.90	7.78	8.35	7.89	8.15									
4	Power import to CPP from Grid	KVH		-	-	-	-	-	-	-	-	Avg Gen.	10.42	11.69	17.78	22.97	23.26	22.20	22.58	20.30
5	Export from CPP	KVH		-	-	-	3000	-	-	-	-		24.01	24.70	22.70	42.05	42.50	42.42	41 42	27.24
6	Net power Generation	KVH		461040	502100	499660	402490	482890	363500	498060	406100	Aux	24.91	24.78	33.70	42.05	43.50	42.13	41.42	37.34
(Average Load(Gross)	MV		20.8	22.6	22.5	18.2	21.8	16.5	22.5	18.4	Аих	9 96	8 84	7 90	7 63	7 80	7 91	7 64	7 67
(B)	SPECIFIC PARAMETERS												5.50	0.01	7.50	7.05	7.00	7.51	7.01	7.07
8	STGload Max	MV		24.7	24.1	23.6	23.5	24.3	23.5	25.0	23.6	PLF	41.67	46.74	71.12	91.88	93.04	88.79	90.31	81.18
9	STG load Min.	MV		13.2	17.2	19.4	1.6	13.8	9.8	12.1	13.4		24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00
10	Plant Running Hours	Hours		24	24	24	24	24	24	24	24	K.Hrs.	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00
11	Stoppage Hours due to no load demand.	Hours		0	0	0	0	0	0	0	0	Ambient Temp	27,90	27.00	26.80	26,10	26.50	26.90	26.40	24.40
12	Specific fuel Consumption Coal	KgiKVH		1.11	1.11	1.09	1.10	1.06	1.09	1.07	1.08		2/150	27.00	20:00	20.10	20.50	20.50	20.40	2-1.40
13	Specific steam Consumption	KgiKVH		4.27	4.26	4.27	4.28	4.25	4.33	4.25	4.29	ID Fan	0.85	0.82	1.92	2.87	3.03	2.79	2.52	2.28
14	Specific steam Generation	coal		3.98	3.81	3.92	3.90	4.00	4.11	3.93	4.10	PA Fan	1.15	0.91	1.70	2.07	2.04	2.03	2.05	2.07
15	Plant Availability Factor(PAF)	×		100	100	100	100	100	100	100	100	FD F	C F C	6.50	9.04	10.22	10.02	10.00	10.47	0.04
16	Plant Load Factor(PLF)	×	\$5%	\$3.2	90.6	90.1	72.8	87.3	66.1	90.1	73.7	FD Fan	0.50	0.59	8.04	10.23	10.82	10.89	10.47	9.94
17	Gross Station Heat Rate	ALCON A	3100 / 3600	3465	3445	3426	3439	3336	3390	3349	3384	BFP	7.20	7.35	9.70	12.35	12.67	12.05	12.09	11.09
18	Net Heat Rate			3752	3729	3705	3734	3618	3700	3636	3684									
19	Station Heat after Unburnt Discount	Kcalikwh		3400	3375	3360	3330	3268	3316	3309	3292	CEP	0.65	0.68	0.79	0.91	0.93	0.91	0.90	0.85
(C)	BOILER											100	1.05	0.00	2 72	4 27	4 50	4.02	1.00	2.24
20	Steam Generation	МТ		2210	2302	2313	1877	2225	1772	2275	1965	ALL	1.05	0.90	2.72	4.27	4.59	4.05	4.00	2.24
21	ECO O/L Feed water temp.	<u>.</u> C		282	286	286	271	282	276	284	280	AHP	1.37	1.52	1.67	1.98	2.03	2.10	2.34	2.16
22	Average O2 in Flue gases	×		4.1	4.2	41	4.5	4.1	4.5	4.1	4.3		2107	1.02	2107	2.00	2.00	2.20	2101	
23	ESP VL Flue gas temp.	- <u>C</u>		135	138	137	133	137	133	140	139	ESP	1.53	1.52	1.58	1.67	2.16	1.92	1.62	1.67
Z4	Boiler Efficiency	×		79	79	79	79	79	<u>S0</u>	S0	<u>\$0</u>	CHD	0.72	0.72	0.04	1 16	1 2/	1 01	0.00	1 02
(D)	TURBINE						10.12		1844		10.10		0.75	0.75	0.94	1.10	1.24	1.01	0.55	1.00
25	TG steam Consumption	MI Kalem ²		2169	0.781	2285	1842	0.780	1746	2252	1943	ACW	1.18	1.17	1.16	1.17	1.21	1.20	1.17	1.17
20	TC Fulseum Tamp and	Kgreuiz oC		-0.760	-0.701	-0.751	-0.762	-0.700	-0.761	-0.780	-0.701		0.00	0.00	0.02	0.00	0.00	0.04	1.05	0.00
28	TO Exhaust Temp ost	OL Kalema		02.0	02.3	02.1	01.9	04.4	04.4	02.0	02.3	AC & VENT	0.89	0.90	0.92	0.90	0.89	0.94	1.05	0.96
20	An Line Transmissore	Kgremz .c		34.9	30.1	30.0	30.5	30.2	20.1	20.1	20.2	WTP	0.22	0.13	0.16	0.30	0.12	0.17	0.29	0.16
23	Ambient Temperature	τ.		20.2	- 27	24.8	27.0	28.3	28.8	29,1	29.2	VV II	0.22	0.15	0.10	0.50	0.12	0.17	0.25	0.10

Daily Performance Monitoring

JKC

Daily Auxiliary Monitoring

INVOLVEMENT OF EMPLOYEES IN PLANT PERFORMANCE

BEST PRACTICES - OPERATION

R.NO	DESCRIPTION
1	Technical PD is being conducted on daily basis.
2	ACC fins cleaning by high pressure water jet (Internal & External).
3	Periodical Tripping Interlocks checking during every stoppage.
4	Screen/Crusher & Tunnel inspection in each shift
5	High LOI fly ash conveying system is being recycled into furnace.
6	SILO fly ash is being mixed up with Indonesian coal at Coal Stock yard.
7	Adopted island operation during rainy and bad weather conditions.
8	Periodical IR thermography testing of electrical panels and Boiler.
9	Periodical watering at earth pits & checking of earth resistance values.
10	Effective preservation of plant during stoppage every month for 10 to 12 days
11	Adopted cement mills manual tripping system during emergency
12	Often Bucket Elevator boot end open inspection.
13	Often Operating vibrators at coal feeding chutes.

JKC

BEST PRACTICES - MAINTENANCE

JKC

SR.NO	DESCRIPTION
1	Bed Coil thickness mapping & refractory inspection in every stoppage
2	Periodical bearing clearance & inspection in all fans during stoppage
3	 Vibration monitoring - ✓ Shift wise (Hand held vibrating Pen) ✓ Fortnight (PM cell) ✓ Quarterly (external).
4	CHP area all bearings inspection & greasing once (3 months) Both coal and lime crusher hammers replacement once (3 months) Gearbox oil replacement once (6 months)
5	DCF chain links & locking pins checking (weekly)
6	ACC Gearbox oil level checking (weekly)
7	UPS battery inspection and redundancy testing
8	ESP Cleaning and Air Load test in every stoppage
9	Periodical checking of Insulation condition and replacement as and when required.
10	PLC server redundancy checking in every stoppage.

JKC

"National Safety Week Celebration"

Daily Toolbox Talk

Monthly Motivational program

BEST PRACTICES - SAFETY

- S implementation Completed.
- Checking of power tools, gas cutting set & etc. (monthly)
- Mechanical and Electrical LOTOTO system implemented
- Internal Safety audit is being conducted (monthly)
- Safety Review meeting is being conducted (monthly)
- Motivational gifts are being conducted (monthly).
- ✤ 50 safety training classes conducted in FY 2020-21.
- Emergency mock drills are being conducted (quarterly).
- Consistently recognised as best department (safety practices and maintain housekeeping)

KAIZEN IMPLEMENTATION

- * KAIZEN scheme was first implemented by 2017-18.
- Good improvement and savings achieved.
- * Kaizens (427 Nos) have been implemented in last 4 years.
- ✤ Average 5 Nos of employees are involved per Kaizen.
- Submitted kaizens are thoroughly being reviewed & verified by dedicated Kaizen team.
- Shortlisted Kaizens are being awarded in every month.
- ✤ We have achieved:

*Around Rs. 330 Lacs Savings

- Improved safety performance
- Increased reliability and availability

MASS HOUSE-KEEPING

5S IMPLEMENTATION

JKC

GREEN DEVELOPMENT

SAFETY ACCOLADES

JKC

50TH NATIONAL SAFETY DAY - 2021 **STATE LEVEL AWARDS CEREMONY & PUBLIC FUNCTION** BEST POWER PLANT BOILER CATEGORY-1ST PRIZE J.K.CEMENT MUDDAPUR

50ಪಿ: ರಾಷ್ಟ್ರೀಯ ಸುರಕ್ಷತಾ ದಿನಾಜರಣೆ 2021 📲 State Level Safety Award 🏶 GREAT : 04.03.2021

ಮು ಜೆ. ಶೆ. ಸಿಮೆಂಬ್ ಪಕ್ಷ್ ಣ. ಬಾಗಲಕೊಂಟಿ, ರೇ ಕಾರ್ಮಾನೆಯು 30ನೇ ರಾಷ್ಟ್ರಿಯ ಸುರಕ್ಷರಾ ಏನಾದರನ ಅಂಗವಾಗಿ ಏರ್ಪಡಿಸಿದ ರಾಜ್ಯಮಟ್ಟದ ಸುರಕ್ಷತಾ ಸ್ಪರ್ಧೆಯಲ್ಲ ಭಾಗವಹಿಸಿದ್ದು, 2020ನೇ ಸಾಅಗೆ "ವಾಂಭರ್ ನಿರ್ವಕಣಿಯ್ದಾನ ಲುವುದು ಸಾಧನ" ಗಾಗಿ "ಉತ್ತಮ ಪವರ್ ಪ್ಲಾಂಟ್ ಬಾಂಧ್ಲೇರ್ (BEST POWER PLANT BOILER)" Aparidg "ಪ್ರಧಮ ಪ್ರಶಸ್ತಿ" ಯನ್ನು ನೀಡಿ ಮರಸ್ಥರಿಸಿದೆ.

ಕರ್ನಾಟಕ ರಾಜ್ಯ ಸುರಕ್ಷತಾ ಸಂಸ್ಥೆ (ಂ) ಕಾರ್ಖಾನೆಗಳು, ಬಾಯರುಗಳು ಕೈಗಾಲಿಕಾ ಸುರಕ್ಷತೆ ಮತ್ತು ಸ್ಥಾಸ್ಟ್ರ ಇಲಾಬೆ

CII 21ST NATIONAL AWARD FOR EXCELLENCE IN ENERGY MANAGEMENT

ENVIRONMENTAL AWARDS

CII 8TH NATIONAL AWARD FOR ENVIRONMENTAL BEST PRACTICES *"MOST INNOVATIVE ENVIRONMENTAL PROJECT"*

JKC

MISSION ENERGY FOUNDATION'S AWARD "Environmental Excellence - Existing TPPs (Winner)" "Efficient Management of Fly Ash - CPP (Runner Up)"

GreenCo Gold Rated Plant

IMPLEMENTATION OF ISO 50001

Email: R.Durgaram@jkcement.com